
Rapport - Projet Programmation Orientée Objet

WARGAME JAVA
Un jeu de stratégie inspiré du monde (imaginaire)

du seigneur des anneaux.

GHODBANE Rachid

Licence 3 Informatique – Université Jean Monnet 2025/2026

Table des matières
1 Introduction 3

2 Analyse du projet 3
2.1 Architecture générale . 3

3 Techniques de POO/Java mises en œuvre 4
3.1 Héritage . 4
3.2 Encapsulation . 4
3.3 Polymorphisme . 4
3.4 Interfaces . 4
3.5 Classes abstraites . 5
3.6 Énumérations . 5
3.7 Exceptions personnalisées . 5
3.8 Sérialisation . 5
3.9 Système de grille hexagonale . 6
3.10 Intelligence artificielle avec Dijkstra . 9

4 Présentation du résultat 13
4.1 Fonctionnalités principales . 13
4.2 Interface graphique . 14
4.3 Système de jeu . 14

5 Organisation du travail 15
5.1 Répartition des tâches . 15

6 Ressources utilisées 15
6.1 Bibliothèques Java . 15
6.2 Documentation et tutoriels . 15
6.3 Assets et ressources graphiques . 15

7 Conclusion 16
7.1 Améliorations possibles . 16

Annexe A : Diagrammes UML 17
A.1 - Diagramme complet . 17
A.2 - Diagramme par couches . 18
A.3 - Architecture simplifiée . 19

Annexe B : Exemples de code 20

Annexe C : Captures d’écran 22

2

Rapport Projet POO Licence 3 Informatique

1 Introduction

Le projet WARGAME Java est un jeu de stratégie au tour par tour développé en
Java dans le cadre de l’enseignement de Programmation Orientée Objet en Licence 3
Informatique. L’objectif principal est de mettre en pratique les concepts fondamentaux
de la POO à travers la conception et l’implémentation d’un jeu complet et fonctionnel.

Le jeu oppose le joueur contrôlant une équipe de héros à une intelligence artificielle
gérant une armée de monstres sur une carte hexagonale. Le but est de détruire la
base ennemie tout en défendant la sienne, en utilisant différents types d’unités aux
caractéristiques variées.

Le code source complet du projet est disponible sur GitHub à l’adresse suivante :

https://github.com/rvsh0x/wargame

2 Analyse du projet

2.1 Architecture générale
Le projet est organisé selon une architecture MVC (Modèle-Vue-Contrôleur) adap-

tée aux jeux vidéo :

2.1.1 MODÈLE (Logique métier)

— Gestion de la carte et des éléments

— Règles de jeu et mécanique de combat

— Intelligence artificielle des monstres

— Système économique (or et améliorations)

2.1.2 VUE (Interface graphique)

— Fenêtres (Menu, Jeu, Personnages, Classement)

— Panneaux de jeu et d’information

— Menus contextuels (Pause, Sauvegarde, Paramètres)

2.1.3 CONTRÔLEUR (Gestion des événements)

— Gestion des clics souris

— Gestion des touches clavier

— Logique de tour par tour

Note : Le projet contient 29 classes organisées dans le package wargame. Les dia-
grammes UML complets (diagramme de classes, diagramme par couches, architecture
simplifiée) sont disponibles en Annexe A (pages 17, 18 et 19).

3

https://github.com/rvsh0x/wargame

Rapport Projet POO Licence 3 Informatique

3 Techniques de POO/Java mises en œuvre

3.1 Héritage
La hiérarchie principale du projet utilise l’héritage pour réutiliser et spécialiser le

code :
Element→ Soldat→ {Heros, Monstre}
Avantages :

— Réutilisation du code (combat, déplacement)

— Spécialisation par sous-classe (amélioration pour Heros)

— Maintenance facilitée

Voir exemple de code en Annexe B.1 (page 20).

3.2 Encapsulation
Application systématique du principe d’encapsulation avec :

— Attributs privés ou protégés

— Accesseurs (getters) et mutateurs (setters)

— Visibilité restreinte (package-private pour certains constructeurs)

— Immutabilité pour les types (final)

Voir exemple de code en Annexe B.2 (page 20).

3.3 Polymorphisme
Le polymorphisme est utilisé sous trois formes dans le projet :

— Polymorphisme d’héritage : Méthodes abstraites redéfinies dans les sous-classes

— Polymorphisme d’interface : Implémentation de contrats (ISoldat, ICarte)

— Polymorphisme paramétrique : Utilisation de types génériques (Class<?>)

Voir exemples de code en Annexe B.3 (page 20).

3.4 Interfaces
Les interfaces définissent des contrats clairs :

— ISoldat : Contrat pour tous les soldats

— ICarte : Contrat pour la gestion de la carte

Avantages :

— Contrats clairs et explicites

— Flexibilité dans l’implémentation

— Facilite les tests et l’évolution

4

Rapport Projet POO Licence 3 Informatique

3.5 Classes abstraites
Deux classes abstraites principales structurent le modèle :

1. Element : Base de tous les objets de la carte

— Constructeurs concrets
— Méthodes utilitaires (estHeros, estMonstre)
— Attributs communs (position, carte)

2. Soldat : Base de tous les combattants

— Logique de combat commune
— Méthodes abstraites pour la spécialisation
— Implémentation du Template Method pattern

Choix de conception : Classe abstraite si état commun ET comportement partagé,
interface si seulement contrat.

3.6 Énumérations
Les énumérations enrichies encapsulent données et comportements :
Avantages :

— Type-safety (sécurité des types)

— Lisibilité accrue

— Centralisation des constantes

— Méthodes statiques de génération (getTypeHAlea, getTypeHUnique)

Voir exemple de code en Annexe B.4 (page 21).

3.7 Exceptions personnalisées
Exception PasUnMonstre (inner class dans Carte) pour la validation métier.
Avantages :

— Gestion d’erreurs spécifiques au domaine

— Messages d’erreur clairs et contextuels

— Séparation des erreurs métier des erreurs techniques

Voir exemple de code en Annexe B.5 (page 21).

3.8 Sérialisation
Toutes les classes du modèle implémentent Serializable pour la persistance.
Système de sauvegarde complet :

— Classe Sauvegarde avec inner classes Donnees et Metadonnees

— Sauvegarde de l’état complet du jeu

— 4 slots de sauvegarde disponibles

— Affichage des métadonnées (pseudo, temps, date)

Voir exemple de code en Annexe B.6 (page 21).

5

Rapport Projet POO Licence 3 Informatique

3.9 Système de grille hexagonale
Un des défis techniques majeurs du projet a été l’implémentation d’une grille hexa-

gonale pour la carte de jeu. Contrairement à une grille carrée classique, les hexagones
offrent 6 voisins directs et créent des chemins de déplacement plus naturels. Cette
section détaille les fondements mathématiques et algorithmiques de ce système.

3.9.1 Théorie des coordonnées hexagonales

Les grilles hexagonales peuvent être représentées selon plusieurs systèmes de
coordonnées. Le projet utilise le système de coordonnées offset (décalé) avec aligne-
ment axial vertical, où chaque hexagone est identifié par un couple (x, y) :

— x ∈ [0, L] : colonne (largeur de la carte)

— y ∈ [0, H] : ligne (hauteur de la carte)

Dans ce système, les colonnes paires et impaires sont décalées verticalement de 1
2

unité, créant une asymétrie qui doit être prise en compte dans les calculs de voisinage.

3.9.2 Formalisation mathématique du voisinage

Soit H(x, y) un hexagone à la position (x, y). Le calcul des voisins diffère selon la
parité de x :

Cas 1 : Colonne paire (x ≡ 0 (mod 2))
Les 6 voisins de H(x, y) sont définis par :

Npair(x, y) = {(x− 1, y), (x, y − 1), (x+ 1, y), (x+ 1, y + 1), (x, y + 1), (x− 1, y + 1)}
(1)

Cas 2 : Colonne impaire (x ≡ 1 (mod 2))
Les 6 voisins de H(x, y) sont définis par :

Nimpair(x, y) = {(x− 1, y − 1), (x, y − 1), (x+ 1, y − 1), (x+ 1, y), (x, y + 1), (x− 1, y)}
(2)

Cette différenciation permet de gérer correctement le décalage vertical entre co-
lonnes adjacentes dans le système offset.

3.9.3 Distance hexagonale

La distance entre deux hexagones H1(x1, y1) et H2(x2, y2) peut être calculée selon
différentes métriques. Pour un graphe non pondéré où chaque arête a un poids uni-
taire, la distance correspond au nombre minimal de déplacements nécessaires, calcu-
lable via la distance de Manhattan adaptée aux hexagones :

dhex(H1, H2) = max

(
|x2 − x1|, |y2 − y1|+

⌊
|x2 − x1|

2

⌋)
(3)

Toutefois, dans notre contexte de pathfinding avec Dijkstra, la distance est calculée
dynamiquement comme le nombre de sauts (edges) dans le graphe, chaque hexagone
étant un nœud et chaque adjacence une arête de poids 1.

6

Rapport Projet POO Licence 3 Informatique

3.9.4 Complexité du calcul de portée

L’algorithme récursif posAdjacentePortee() explore toutes les positions accessibles
dans un rayon r. Pour un rayon r, le nombre maximal de positions explorées suit une
progression arithmétique basée sur le nombre de voisins par hexagone (6) :

|P (r)| ≤ 1 + 6
r∑

i=1

i = 1 + 3r(r + 1) (4)

Cette formule découle du fait que chaque niveau i peut contenir jusqu’à 6i nouvelles
positions. La complexité temporelle est donc O(r2) et la complexité spatiale O(r2) pour
stocker toutes les positions trouvées.

3.9.5 Implémentation des voisins

La méthode posAdjacente() dans la classe Position implémente le calcul des 6
voisins selon la parité de x :

1 public Position [] posAdjacente () {
2 int i = 0;
3 Position [] res = new Position [6];
4

5 // Definition des decalages selon parite
6 int [][] voisinsImpair = {
7 {x-1, y-1}, {x, y-1}, {x+1, y-1},
8 {x+1, y}, {x, y+1}, {x-1, y}
9 };

10

11 int [][] voisinsPair = {
12 {x-1, y}, {x, y-1}, {x+1, y},
13 {x+1, y+1}, {x, y+1}, {x-1, y+1}
14 };
15

16 // Selection selon parite de la colonne
17 int [][] voisins = (x % 2 == 0) ? voisinsPair : voisinsImpair;
18

19 // Construction du tableau de voisins valides
20 for (int[] voisin : voisins) {
21 Position newPos = new Position(voisin [0], voisin [1]);
22 if (newPos.estValide ()) {
23 res[i] = newPos;
24 i++;
25 }
26 }
27 return res;
28 }

Listing 1 – Calcul des voisins hexagonaux

3.9.6 Propriétés géométriques et algorithmiques

La grille hexagonale présente plusieurs avantages algorithmiques par rapport à une
grille carrée :

7

Rapport Projet POO Licence 3 Informatique

1. Uniformité des distances : Tous les 6 voisins sont équidistants, contrairement
aux 8 voisins d’une grille carrée (4 adjacents + 4 diagonaux plus éloignés). Cette
propriété simplifie les calculs de pathfinding.

2. Directionnalité réduite : Le nombre de directions possibles (6) est un compromis
entre les 4 directions cardinales (limitées) et les 8 directions d’une grille carrée
(plus complexes à gérer).

3. Isotropie améliorée : Les distances et chemins sont plus uniformes dans toutes
les directions, réduisant les biais directionnels dans les algorithmes de recherche
de chemin.

3.9.7 Représentation visuelle et rendu

Le rendu graphique utilise un système de coordonnées pixels avec décalage condi-
tionnel basé sur la parité de la colonne. Pour un hexagone de rayon R (en pixels), la
position verticale d’affichage est :

ypixel = y ·
√
3 ·R +

{
0 si x ≡ 0 (mod 2)
√
3·R
2

si x ≡ 1 (mod 2)
(5)

Cette formule garantit que les hexagones sont correctement imbriqués visuelle-
ment, chaque hexagone touchant exactement 6 voisins sans chevauchement ni es-
pace.

8

Rapport Projet POO Licence 3 Informatique

3.10 Intelligence artificielle avec Dijkstra
L’IA des monstres utilise l’algorithme de Dijkstra pour calculer le chemin optimal

vers les héros détectés, créant un comportement intelligent et prévisible. Cette section
présente les fondements théoriques, l’analyse de complexité et les détails d’implémen-
tation de cet algorithme classique de pathfinding.

3.10.1 Formalisation du problème

Le pathfinding sur grille hexagonale peut être modélisé comme un problème de
recherche du plus court chemin dans un graphe non orienté G = (V,E) où :

— V = {(x, y) ∈ Z2 : 0 ≤ x < L, 0 ≤ y < H} est l’ensemble des nœuds (positions
hexagonales valides)

— E = {(u, v) : u, v ∈ V, u et v sont adjacents} est l’ensemble des arêtes (adja-
cences hexagonales)

— w : E → R+ est la fonction de poids (dans notre cas, w(e) = 1 pour toute arête e)

Soit s ∈ V la position de départ (monstre) et t ∈ V la position cible (héros). Le
problème consiste à trouver un chemin π = (v0 = s, v1, . . . , vk = t) minimisant :

w(π) =
k−1∑
i=0

w(vi, vi+1) (6)

3.10.2 L’algorithme de Dijkstra : théorie et optimalité

L’algorithme de Dijkstra, proposé en 1956 par Edsger W. Dijkstra, est un algorithme
glouton qui garantit de trouver le plus court chemin dans un graphe à poids positifs.
L’algorithme maintient un ensemble S de nœuds dont la distance minimale depuis s
est connue, et une file de priorité Q contenant les nœuds restants.

Invariant principal : Pour tout nœud v ∈ S, d[v] représente la distance minimale
réelle depuis s jusqu’à v.

Preuve d’optimalité (résumé) : Supposons qu’il existe un chemin plus court de s
à un nœud u /∈ S. Alors ce chemin doit quitter S à un certain point, disons via l’arête
(v, w) où v ∈ S et w /∈ S. Mais comme d[v] est optimal et tous les poids sont positifs,
l’algorithme aurait déjà exploré cette possibilité, ce qui constitue une contradiction.

3.10.3 Analyse de complexité

Pour notre implémentation utilisant une PriorityQueue (tas binaire), la complexité
est :

— Temporelle : O(|V | log |V |+ |E| log |V |) = O(|E| log |V |)
— |V | = L×H opérations d’extraction du minimum (coût log |V | chacune)
— |E| ≤ 6|V | (chaque hexagone a au plus 6 voisins) opérations de mise à jour

de priorité
— Spatiale : O(|V |) pour stocker les distances, prédécesseurs et la file de priorité

Dans le pire cas avec |V | = 450 (carte 30×15) et |E| ≈ 2700 (chaque hexagone a
en moyenne 6 voisins), l’algorithme effectue environ 450× log2(450) ≈ 3800 opérations
de tas, soit une complexité très raisonnable pour un temps réel dans un jeu au tour par
tour.

9

Rapport Projet POO Licence 3 Informatique

3.10.4 Adaptations spécifiques au contexte de jeu

Notre implémentation intègre plusieurs adaptations pour le contexte de jeu :

1. Gestion des obstacles : Les arêtes vers des hexagones contenant des obs-
tacles sont exclues du graphe (poids effectif∞).

2. Évitement des monstres alliés : Les hexagones occupés par d’autres monstres
sont exclus du chemin, évitant les collisions.

3. Arrêt anticipé : L’algorithme s’arrête dès que la cible t est atteinte (et non après
exploration complète du graphe), optimisant les performances.

4. Remontée de chemin : Une fois le chemin optimal trouvé, la méthode remonterChemin()
reconstitue le chemin complet de t vers s en suivant les prédécesseurs, puis re-
tourne uniquement la première étape depuis s.

3.10.5 Implémentation

Le projet utilise une classe interne NoeudDijkstra pour représenter chaque nœud
avec sa position, sa distance depuis le départ, et son prédécesseur dans le chemin
optimal.

1 public Position dijkstraProchainePas(Position depart , Position cible) {
2 Map <String , Integer > distances = new HashMap <>();
3 Map <String , Position > precedents = new HashMap <>();
4

5 // File de priorite triee par distance croissante
6 PriorityQueue <NoeudDijkstra > file = new PriorityQueue <>(
7 Comparator.comparingInt(n -> n.distance)
8);
9

10 // Initialisation
11 distances.put(cleDepart , 0);
12 file.add(new NoeudDijkstra(depart , 0, null));
13

14 while (!file.isEmpty ()) {
15 NoeudDijkstra noeudActuel = file.poll();
16

17 if (noeudActuel.position == cible) {
18 return remonterChemin(precedents , depart , cible);
19 }
20

21 // Explorer les 6 voisins hexagonaux
22 for (Position voisin : posActuelle.posAdjacente ()) {
23 // Calcul du plus court chemin ...
24 }
25 }
26

27 return null;
28 }

Listing 2 – Algorithme de Dijkstra (extrait)

3.10.6 Détails d’implémentation et optimisations

L’implémentation utilise deux structures de données principales pour l’efficacité :

10

Rapport Projet POO Licence 3 Informatique

1. HashMap pour distances et prédécesseurs : Accès en O(1) amorti pour véri-
fier et mettre à jour les distances connues.

2. PriorityQueue (tas binaire) : Structure optimale pour extraire rapidement le
nœud avec la distance minimale, avec complexité O(log n) pour les opérations
d’insertion et d’extraction.

Description algorithmique détaillée :
L’algorithme procède selon les étapes suivantes :

1. Initialisation : Créer une file de priorité Q vide, initialiser un dictionnaire dist[·]
avec toutes les distances à∞, et un dictionnaire pred[·] avec tous les prédéces-
seurs à null. Initialiser dist[s]← 0 et insérer (s, 0) dans Q.

2. Boucle principale : Tant que Q n’est pas vide :

(a) Extraire le nœud u avec la plus petite distance de Q (opération extract-min).
(b) Si u = t (cible atteinte), alors reconstruire le chemin via remonterChemin()

et retourner la première étape.
(c) Pour chaque voisin v de u tel que v est valide et non bloqué (pas d’obstacle

ni de monstre) :

i. Calculer alt← dist[u] + w(u, v) (dans notre cas, w(u, v) = 1).
ii. Si alt < dist[v] (chemin plus court trouvé), alors :

A. Mettre à jour dist[v]← alt et pred[v]← u.
B. Insérer (v, alt) dans Q ou mettre à jour la priorité si v est déjà dans

Q.

3. Résultat : Si la boucle se termine sans atteindre t, retourner null (aucun chemin
trouvé).

Cette description formelle capture l’essence de l’algorithme de Dijkstra tout en res-
tant accessible sans nécessiter de package spécialisé pour les algorithmes.

3.10.7 Comparaison avec d’autres algorithmes de pathfinding

Dijkstra a été choisi plutôt que A* pour plusieurs raisons :

— Simplicité : Aucune heuristique à concevoir ou calibrer.

— Optimalité garantie : Dans un graphe non pondéré, Dijkstra est aussi efficace
qu’A* et garantit toujours l’optimalité.

— Performance suffisante : Pour des cartes de taille raisonnable (30×15 = 450
nœuds) et un contexte de jeu au tour par tour, la différence de performance avec
A* est négligeable.

Si une optimisation future était nécessaire, A* avec une heuristique de distance
hexagonale pourrait réduire le nombre de nœuds explorés, mais au prix d’une com-
plexité algorithmique accrue.

Résultat : L’implémentation permet aux monstres de poursuivre efficacement les
héros détectés en calculant des chemins optimaux contournant les obstacles, créant
une expérience de jeu dynamique et stratégique avec un comportement IA prévisible
et performant.

11

Rapport Projet POO Licence 3 Informatique

4 Présentation du résultat

4.1 Fonctionnalités principales

4.1.1 Système de jeu

1. Carte hexagonale personnalisable avec obstacles variés
— Taille configurable (défaut : 30×15)
— Obstacles : Rochers, Forêts, Eau
— Style de map paramétrable

2. Deux équipes avec types d’unités variés
HÉROS (joueur) :

— HUMAIN : Équilibré (PV :40, ATK :10, TIR :2, VUE :3)
— NAIN : Tank (PV :80, ATK :50, TIR :0, VUE :1)
— ELF : Archer (PV :70, ATK :40, TIR :6, VUE :5)
— HOBBIT : Éclaireur (PV :20, ATK :20, TIR :2, VUE :3)
— BASE : Objectif à défendre

MONSTRES (IA) :
— TROLL : Boss (PV :100, ATK :30, Récompense :100 or)
— ORC : Soldat (PV :40, ATK :10, Récompense :30 or)
— GOBELIN : Éclaireur (PV :20, ATK :5, Récompense :10 or)
— BASE : Objectif à détruire

3. Mécanique de combat
— Combat au corps à corps si adjacents (dégâts aléatoires 0-max)
— Combat à distance sinon (dégâts fixes)
— Riposte si survie et portée suffisante
— Repos pour regagner 5 PV (max initial)

4. Système économique
— Gain d’or en tuant des monstres
— Amélioration des héros : 50 or par niveau
— Bonus de +25% sur toutes les stats + soin complet
— BASE non améliorable

5. Brouillard de guerre
— Zones non explorées masquées (hexagones gris 70% opacité)
— Révélation selon portée visuelle des héros
— Mise à jour dynamique

6. Intelligence artificielle
— Algorithme de Dijkstra pour se rapprocher des héros détectés
— Détection dans un rayon de 5 hexagones
— Déplacement aléatoire si aucun héros détecté

7. Conditions de victoire/défaite
— Victoire : Destruction de la base ennemie
— Défaite : Tous les héros morts OU base détruite

12

Rapport Projet POO Licence 3 Informatique

4.2 Interface graphique
L’interface graphique du jeu a été conçue pour offrir une expérience utilisateur in-

tuitive et immersive avec un thème médiéval cohérent.
Composants principaux :

— Menu principal : Saisie pseudo, boutons Jouer/Sauvegardes/Paramètres/Histo-
rique/Personnages

— Fenêtre de jeu : Carte hexagonale avec brouillard de guerre, panneau latéral
complet

— Panneau latéral : Or, liste des héros (portraits, stats, barres de vie), mini-carte
tactique, infos temps réel

— Menus contextuels : Pause (ESC), Sauvegarde (4 slots), Écran de fin, Person-
nages, Historique

Style visuel :
— Thème médiéval avec palette marron foncé (RGB : 80, 50, 30)
— Texte blanc, effets de survol, dialogues customisés
— Musique médiévale d’ambiance
Pour une présentation visuelle détaillée de l’interface, voir Annexe E : Captures

d’écran (page 22).

4.3 Système de jeu

4.3.1 Tour de jeu

Phase du joueur :
1. Sélection d’un héros (clic)
2. Affichage des positions accessibles
3. Actions possibles : Déplacement, Attaque, Repos, Amélioration
4. Fin du tour (touche F)
Phase de l’IA :

1. Traitement automatique de tous les monstres
2. Détection des héros (rayon 5)
3. Déplacement intelligent (Dijkstra) ou aléatoire
4. Attaque si héros adjacent
5. Mise à jour de l’affichage

4.3.2 Sauvegarde/Chargement

La sérialisation complète permet de sauvegarder :
— Positions de tous les éléments
— PV actuels de tous les soldats
— Niveau d’amélioration des héros
— Or accumulé
— Temps de jeu et tour actuel

13

Rapport Projet POO Licence 3 Informatique

5 Organisation du travail

5.1 Répartition des tâches
Ce projet a été développé individuellement avec les phases suivantes :

Phase Période Temps
PHASE 1 - Conception Semaines 1-2 15h
PHASE 2 - Modèle Semaines 3-4 30h
PHASE 3 - Interface Semaines 5-7 35h
PHASE 4 - Fonctionnalités avancées Semaines 8-9 35h
PHASE 5 - Documentation Semaine 10 10h
TOTAL 10 semaines 125h

TABLE 1 – Répartition du temps de développement

6 Ressources utilisées

6.1 Bibliothèques Java
— java.awt.* : Interface graphique de base

— javax.swing.* : Composants GUI avancés

— java.io.* : Sérialisation et fichiers

— javax.sound.sampled.* : Gestion audio

— java.util.* : Collections et utilitaires

6.2 Documentation et tutoriels
— Documentation officielle Oracle Java SE : https://docs.oracle.com/en/java/

javase/17/

— Java Swing Tutorial : https://docs.oracle.com/javase/tutorial/uiswing/

— Cours "Programmation Orientée Objets (POO - Java)" de Mathias Géry, Licence
3 Informatique, Université Jean Monnet, 2025

— OpenClassrooms - Cours Java

— Stack Overflow pour résolution de problèmes spécifiques

— GeeksforGeeks - Dijkstra’s Algorithm

6.3 Assets et ressources graphiques
— Carte et personnages : Création personnelle / Génération par IA (GPT-5.1)

— Musique : "Medieval Waltz" (licence Creative Commons)

— Icônes et textures : Open source

14

https://docs.oracle.com/en/java/javase/17/
https://docs.oracle.com/en/java/javase/17/
https://docs.oracle.com/javase/tutorial/uiswing/

Rapport Projet POO Licence 3 Informatique

7 Conclusion

Le projet WARGAME Java démontre la mise en œuvre complète des concepts
de Programmation Orientée Objet dans le cadre d’un jeu de stratégie fonctionnel et
jouable.

L’application met en pratique de manière approfondie les principes de la POO :

— Héritage et polymorphisme (hiérarchie Element→ Soldat→ Heros/Monstre)

— Encapsulation rigoureuse des données

— Interfaces (ISoldat, ICarte) définissant des contrats clairs

— Énumérations enrichies (TypesH, TypesM) avec logique métier

— Exceptions personnalisées et sérialisation

L’architecture MVC adoptée facilite la maintenance et l’évolution du code. Le sys-
tème de jeu complet (combat, amélioration, économie, IA Dijkstra, brouillard de guerre)
offre une expérience stratégique cohérente avec une interface graphique intuitive.

Ce projet a permis de comprendre concrètement comment une bonne conception
orientée objet permet d’ajouter des fonctionnalités complexes sans bouleverser l’ar-
chitecture existante. Les concepts appris seront réutilisables dans de futurs projets de
développement.

7.1 Améliorations possibles
En termes de perspectives d’évolution, ce projet pourrait être enrichi avec :

— Un éditeur de niveaux personnalisés

— Un système de compétences actives pour les héros

— Un mode multijoueur

— Des graphismes plus élaborés (particules, animations avancées)

— Un système de progression (campagne, achievements)

— Une IA plus avancée (stratégies coordonnées, retraite tactique)

15

Rapport Projet POO Licence 3 Informatique

Annexe A : Diagrammes UML

Le projet contient plusieurs diagrammes UML de complexité croissante pour faciliter
la compréhension de l’architecture.

A.1 - Diagramme de classes complet

FIGURE 1 – Diagramme UML complet des 29 classes du projet

Note : Ce diagramme est très détaillé. Pour une vue plus synthétique, consulter les sections A.2 et
A.3.

16

Rapport Projet POO Licence 3 Informatique

A.2 - Diagramme par couches
Ce diagramme présente l’architecture du projet organisée en 4 couches logiques

selon le modèle MVC (Modèle-Vue-Contrôleur) :

— Présentation : Interface utilisateur (fenêtres, panneaux, menus)

— Logique métier : Modèle de jeu (carte, soldats, combat, IA)

— Données : État du jeu (position, configuration, obstacles)

— Services : Utilitaires (sauvegarde, ressources, gestion de l’or)

FIGURE 2 – Architecture en couches du projet

Ce diagramme permet de comprendre rapidement l’organisation globale et les flux
de communication entre les différentes couches du système.

17

Rapport Projet POO Licence 3 Informatique

A.3 - Diagramme d’architecture simplifiée
Ce diagramme présente une vue intermédiaire avec 17 classes principales organi-

sées en 3 packages :

— MODÈLE : Logique métier (Element, Soldat, Heros, Monstre, Carte, etc.)

— VUE : Interface graphique (fenêtres et panneaux principaux)

— UTILITAIRES : Classes de support (Configuration, Ressources, Sauvegarde)

FIGURE 3 – Architecture simplifiée avec les 17 classes principales

Ce diagramme offre un bon équilibre entre lisibilité et exhaustivité, montrant les
classes essentielles avec leurs attributs et méthodes clés.

18

Rapport Projet POO Licence 3 Informatique

Annexe B : Exemples de code

Cette annexe présente des exemples de code illustrant les techniques de POO/Java
décrites dans la section 3.

B.1 - Héritage

1 public abstract class Soldat extends Element implements ISoldat {
2 protected int pointsDeVie;
3

4 public void combat(Soldat soldat) {
5 // Logique commune a tous les soldats
6 }
7 }
8

9 public class Heros extends Soldat {
10 private int niveauAmelioration;
11

12 public boolean ameliorer () {
13 // Logique specifique aux heros
14 }
15 }

Listing 3 – Exemple d’héritage avec Soldat

B.2 - Encapsulation

1 public class Heros extends Soldat {
2 private final TypesH TYPE_H; // Immuable
3 private int niveauAmelioration = 0; // Modifiable
4

5 public TypesH getTypeH () { return TYPE_H; }
6 public int getNiveauAmelioration () { return niveauAmelioration; }
7 }

Listing 4 – Exemple d’encapsulation

B.3 - Polymorphisme
Polymorphisme d’héritage :

1 public abstract class Soldat {
2 public abstract String afficheInfoSoldat ();
3 }
4

5 public class Heros extends Soldat {
6 public String afficheInfoSoldat () {
7 return TYPE_H + " " + numero + " | PV: " + pointsDeVie;
8 }
9 }

Listing 5 – Méthode abstraite redéfinie

19

Rapport Projet POO Licence 3 Informatique

Polymorphisme d’interface :
1 public interface ISoldat {
2 void combat(Soldat soldat);
3 void seDeplace(Position newPos);
4 }

Listing 6 – Implémentation d’interface

Polymorphisme paramétrique :
1 public boolean estClasse(Class <?> c) {
2 return this.getClass ().equals(c);
3 }

Listing 7 – Utilisation de types génériques

B.4 - Énumérations

1 public enum TypesH {
2 HUMAIN (40, 3, 10, 2),
3 NAIN(80, 1, 50, 0),
4 ELF(70, 5, 40, 6);
5

6 private final int POINTS_DE_VIE_MAX , PORTEE_VISUELLE;
7

8 public static TypesH getTypeHAlea () {
9 return values ()[(int)(Math.random ()*values ().length -1)];

10 }
11 }

Listing 8 – Énumération TypesH avec attributs et méthodes

B.5 - Exceptions personnalisées

1 public static class PasUnMonstre extends Exception {
2 public PasUnMonstre () {
3 super("L’element n’est pas un monstre");
4 }
5 }

Listing 9 – Exception personnalisée

B.6 - Sérialisation

1 public class Carte implements ICarte , Serializable {
2 private static final long serialVersionUID = 1L;
3 }

Listing 10 – Implémentation de Serializable

20

Rapport Projet POO Licence 3 Informatique

Annexe C : Captures d’écran de l’interface

Cette annexe présente les captures d’écran de l’interface du jeu. Toutes les images
sont disponibles dans le dossier interface/.

C.1 - Menu principal

FIGURE 4 – Menu principal avec saisie de pseudo et boutons d’accès

C.2 - Fenêtre de jeu

FIGURE 5 – Fenêtre de jeu avec carte hexagonale et panneau latéral

21

Rapport Projet POO Licence 3 Informatique

C.3 - Panneau latéral (détail)

FIGURE 6 – Panneau latéral : or, héros, mini-carte, infos

22

Rapport Projet POO Licence 3 Informatique

C.4 - Menu pause

FIGURE 7 – Menu pause accessible via ESC

23

Rapport Projet POO Licence 3 Informatique

C.5 - Menu sauvegarde

FIGURE 8 – Menu de sauvegarde avec 4 slots

C.6 - Menu chargement

FIGURE 9 – Menu de chargement des parties

24

Rapport Projet POO Licence 3 Informatique

C.7 - Menu paramètres

FIGURE 10 – Menu paramètres : volume, difficulté, style de map

C.8 - Fenêtre personnages

FIGURE 11 – Fenêtre des personnages : caractéristiques des héros et monstres

25

	Introduction
	Analyse du projet
	Architecture générale

	Techniques de POO/Java mises en œuvre
	Héritage
	Encapsulation
	Polymorphisme
	Interfaces
	Classes abstraites
	Énumérations
	Exceptions personnalisées
	Sérialisation
	Système de grille hexagonale
	Intelligence artificielle avec Dijkstra

	Présentation du résultat
	Fonctionnalités principales
	Interface graphique
	Système de jeu

	Organisation du travail
	Répartition des tâches

	Ressources utilisées
	Bibliothèques Java
	Documentation et tutoriels
	Assets et ressources graphiques

	Conclusion
	Améliorations possibles
	Annexe A : Diagrammes UML
	A.1 - Diagramme complet
	A.2 - Diagramme par couches
	A.3 - Architecture simplifiée

	Annexe B : Exemples de code
	Annexe C : Captures d'écran

